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J. Phys. A: Math. Gen., Vol. 12, No. 9, 1979. Printed in Great Britain 

Multidimensional inversion formalism as a compatibility 
condition between different linear differential systems 

H Cornille 
Division de la Physique, CEN Saclay, BP No. 2, 91190 Gif-sur-Yvette, France 

Received 24 July 1978 

Abstract. We consider, as in a previous paper, multidimensional inversion-like integral 
equations (1Es)-from which we can construct a class of potentials without introducing the 
data-associated with a system of n-linear first-order partial differential equations in R". 
Firstly we emphasise that, contrary to the one-dimensional case, there exists different IES 

associated with the same system in R". Then we study the properties of the reconstructe 
potentials in a case where the scalar kernels of the IE depend in fact upon only two 
independent variables, and we find that: (i) there exists a general method for constructing 
real, confined potentials in R"; (ii) for n 2 3  the potentials satisfy well-defined nonlinear 
constraints. For n = 3 the IE is common to two different linear differential systems, for 
n =4,  to three systems, and so on. The compatibility conditions between these linear 
systems reproduce the above nonlinear constraints (for instance, for n = 3 we get the 
nonlinear three-wave equations in two spatial coordinates); (iii) combining (i) and (ii) we 
provide explicit examples for a new class of nonlinear equations reducible to the inversion 
formalism and which have confined solutions in R". 

1. Introduction 

Currently there is great interest in the explicit construction of simple multidimensional 
solutions of nonlinear equations which are real, confined in R". Very few examples are 
known to work: for instance, the one-instanton solution for the Yang-Mills equations 
in R4 (Belavin et a1 1975), the two-spatial-dimensional KDK equation (Manakov et a1 
1977), the two-spatial-dimensional nonlinear three-wave equations (Cornille 1978a), 
and the generalised two-spatial-dimensional nonlinear Schrodinger equation (Cornille 
1978b). For those nonlinear equations which are reducible to the inversion formalism, 
an essential preliminary problem is the existence (or otherwise) of reconstructed 
potentials which are confined in R". This means that we must necessarily investigate 
carefully the properties of the inversion-like integral equations (IES), from which we can 
construct a class of potentials associated to linear systems (without introducing the 
data). 

In the preceding paper (Cornille 1978a) we built IES associated to linear first-order 
differential systems in R ", and in the present one we extend our study of the properties 
of the IES. We recall briefly the previous results: 

Let us consider the n x n differential linear system 
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where L,  and A are diagonal, A = ( 8 J I ) ,  LI = (8,1a/a,8); QI is an n X n potential, 
1 

41 e 9 . 4 1  

q n . . . q n  
Qi=( Il 11; 

and I// is a column vector. Assuming a representation of the solutions of (1) for a set {$,} 
of n functions 

a 00 

I / / j = ( u t J ( X I ) 8 i j + l  K:(xI,  * * 9 ~ " ;  y)u;,(Y)dy), (-+iAh)u':,(x)=O ax ( 2 a )  
X I  

and substituting into ( 2 a )  we obtained 

In this paper we call formulism ' U '  all the properties deduced from the input 
representation (2a), and we will compare with other formalisms coming from different 
input representations of (1). If we try to find an IE of equation (1)  which when written in 
matrix notation is of the type 

X(xl , . . . ,  x , ;y )=&x l , . . . , x , ; y ) + j  
c m  

9 ( s ; x 1 ,  . . . ,  x,;y)rC(xl, . . . ,  xn ; s )ds ,  
-W 

x= (KJ), 9= (F:e(s -XJ, @ = (fi; = F: (s = XI)), (4) 
and such that the K: (solutions of (4)) satisfy the nonlinear equations (3a),  then we find 
that the scalar kernels F:  must satisfy 

a - a  a 
A ;I--+ A ,  I-+ A ; ~ - ) F J  = 0, m = l , 2 , .  . . , n ( ax, as a y  

or (4a) 

Arxl; ~ j = A ~ ( x ~ - y ) + C  AIX~), 
I # j  I # i  

and of course well-defined boundary conditions. The fact that the F(, given by (4a) 
depend upon two independent variables has the following consequences: (i) for n = 2 
the potentials can be confined in R 2  (for instance, there exist confined solutions of the 
generalised nonlinear Schrodinger equation (Cornille 1978b)); (ii) for n 3 3 the poten- 
tials reconstructed from (4) and (4a) are not confined and have to satisfy well-defined 
nonlinear constraints-the nonlinear three-wave equation 

for n = 3, and generalisations of it for n > 3, for instance for n = 4 
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In this paper we pursue our investigations of the IE associated to (1); (i) the 
non-uniqueness of the IE, or the possibility of introducing other formalisms starting 
from different input representations of 4 ;  (ii) the possibility of confined solutions in R ", 
even with the scalar kernels of the IE depending upon two different variables; (iii) the 
fact that the same IE can be associated with different linear systems for which 
compatibility conditions lead to nonlinear constraints for the potentials like ( 5 a )  or 
( 6 ~ ) .  

2. Problems under investigation 

2.1. Non-uniqueness of the possible representations of the solutions associated to linear 
systems and non-uniqueness of the IE in the multidimensional case 

There exist two possible generalisations of (2a)  associated to ( l ) ,  and consequently 
there exist formalisms other than the one called a in the introduction. 

(i) Firstly let us consider what we shall call formulism ' b ' ,  

$1 = (UJ(X1, . . . , X n ) a r j  I K:(xl, . * 3 xn; y)UJ(xl, * I XJ-1, y, xJ+1, . * * 9 xn) dy), 
(2b) 

X I  

UJ = uh,(xJ)vJ 0 0 (XI, * * . 7 XJ-19 X J + l r  * * . 9 x"), ($+iAk)u!(x) = 0, 

where up is an arbitrary function. This arbitrariness is due to the fact that if we consider 
a set (Lp (solutions of (1) when Q I ~ O ) ,  (L1+iA)(+?,. . . , +: )GO,  we can take either 
4; = ( ~ ~ , ( ~ ~ ) S ~ ~ ) a s i n ( 2 a ) o r i + b ~ = ( u ~ , ( x ~ ) u ~ ( x ~ ,  . . . , X ~ - I , X ~ + ~ ,  . . . ,xn)6, ,)asin(26).  In 
§ 3, taking into account this freedom in the representations of 4, we shall deduce, for a 
particular choice of (U;}, a corresponding IE (4b) which will be a generalisation of (4a)  
because (26) reduces to (2a)  when up = 1. We introduce arbitrary constants A i ,  i # j ,  
define A ]  = ( A 1  - A { ) A F 1  for i # j ,  A : =  1, and choose v ;  = n,,, u:f(xl) in (2b). In this way 
we shall obtain an IE with n2 - n parameters which we can introduce into the formalism 
although not being present in (1). Seeking an IE of the equation (4) type, we obtain for 
the kernels 

m = 1 , 2 , .  . . , n 

or (46) 

) F ! = F !  u!=x . - s+  C A'x m m;u;=xi -y+ 1 Afxm , 
m # j  m # i  

J l ( J  J 

whereas the solutions are linked to the potentials following 4: = Aikj, 4;  = 0. This 
new formalism b generalises the previous one a, because when A ;  + 0, then U!; + 
constant, and (26) is reduced to (2a ) .  

In this new formalism we can consider the case where some 41'0 by choosing 
A ;  = A j  or A;= a without modifying the parameters of equation (1) (contrary to 
formalism a for which 41 = 0 requires Ai = 0). This freedom in the formalisms (we shall 
call it bb) will be useful in 04,  when we shall consider the possibility of confined 
solutions in R". However, let us notice that the kernels Fj in (46) still depend upon two 
independent variables. 
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(ii) Secondly we define formulism 'c'. Instead of the representation jx, Kjuj dy in 
(2b) ,  where the integration path is linked with only one coordinate xi, we could take a 
superposition of such terms where all coordinates play a similar role: 

*, = ( U j ( X 1 ,  . . . , xi, . . . , X , ) S I j  

Although for simplicity we shall not derive in the general case the corresponding IE, this 
could be done. Here we report only the results for the case n = 2. In the Zakharov- 
Shabat (1974) multidimensional theory, only one coordinate is really a variable, the 
others being parameters. This would correspond in (2u, b, c) to always choosing the 
same coordinate at the end of the integration path. In conclusion we can enlarge the 
class of representations of the @ j ;  however, seeking an IE of the equation (4) type in the 
cases that we have considered, we always find the feature that for n > 3 the number of 
really independent variables for the scalar kernels of the IE is less than n. Consequently 
we expect to meet difficulties concerning the confinement properties of the (4;).  

2.2. Confined solutions in R" 
In 9 4 we provide a general procedure for the confinement properties of the recon- 
structed potentials in R". Let us iterate the IE of the equation (4) type with (4a) or (4b): 

x= XX", x1= 9, x2= 99, rr, = JI 999, . * . . (4') J n =w 

n = l  

Owing to the fact that these scalar kernels depend only upon two independent variables, 
the terms present in the matrix 9 cannot be confined in more than RZ, those present in 
9.5% in more than R 3 ,  those present in 55 9.9 in more than R4, and so on. Thus, in 

order to have confined potentials in R 3 ,  it is necessary that the potentials q: with the 
same indices as the E: f 0 be put to zero, otherwise they are present in the first term 9 
of the iteration (4'). If we use formalism a this requires A, = 0, whereas if we consider 
formalism b we only put A: = 0 without modifying system (1). So we take advantage of 
the freedom due to the unsatz ( 2 b )  in such a way that only the # 0 have correspond- 
ing 4: potentials identically zero, whereas the qj f 0 appear firstly in the second iteration 
j 9.5% and can be confined in R 3 .  Similarly if the only non-vanishing 4: appear firstly in 
the third term jj  $3%, then these potentials can be confined in R4, and so on for the 
building of a class of confined potentials in R". In order to illustrate these possibilities 
we give now a simple explicit example where the kernels are degenerate, F: = 

gj (U: (s))h:(u:(y)) and 

(i) We consider formalism a with Ff = g:(A,(x, - s ) + f ,  +&)hj(A,(x, -h )+Xl  +fk), 
I, = Amxm, k # j and k # i, q;  = A,(A,)-'kf, and obtain, for the behaviour of the q, in R 3 ,  
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two classes depending upon the corresponding FI being identically zero or not: 

with 

A:,,k(x) = A i 1  gL(-u)hr(-u)du, D = 1 -A:l(f3+~z)A:2(ffl+ff’)A:3(f2+fl). 

Let us assume for the functions gj and hj 

W 

and that IA;,,k(x)l is bounded. It follows that the qj belonging to the second class (7az)  
are confined in R’, whereas those of the first class (7al) are not. We remark that the 
of the second class appear firstly in the second iteration of X, whereas those of the first 
class are present in the first term .@. Wanting to put to zero the qj belonging to the first 
class we see that A = A Z  = A s  = 0, leading also to the vanishing of the qj belonging to the 
second class, and this is impossible. 

(ii) We consider formalism 66:  for the same 9 (equation (7)) as above we assume 
X i  = A: = A: = 0 or = q: = q:  = 0, so that the degenerate kernels of the ( 4 b )  type are 
reduced to Fj = g:(xi - s  + X j x i ) t t ( x i  - y + X : x k )  for ( i ,  i) = (1 ,2) ,  (2 ,3) ,  (3, 1) .  We 
obtain for the only three qj = XjKi f 0 

DRj = h : ( ~ . j x j ) g r ( X I X k ) A j , k ( X i k x i ) ,  ( i ,  i) = (2, (3,2),  (1 ,3) ,  (766)  

where now 

J - X  

If the {gi, h:} verify assumption (8), then the potentials are confined in R’ (the Fredholm 
determinants D are bounded, and we exclude in our discussion the cases where D 
vanishes). 

2.3. The fact that our XES for n 2 3 represent a compatibility condition between different 
linear systems is studied in P 5 

In fact the qj reconstructed either from formalism a or formalism b satisfy constraints 
for n 3 3; they are solutions of well-defined nonlinear equations like (5a)  and (6a) .  In 
9: 5 we explain the origin of these constraints. 

For n = 3 we show that there exists another linear system 

(LII - Q I d *  = 0 (1’) 
associated to (l), with the same solution rl, as given by ( 2 a )  or ( 2 6 )  and leading to the 
same IE ( 4 a )  or ( 4 6 ) .  From the compability condition 

[LI 9 L I I  14=0 (9) 
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we obtain for the scalar potentials q: the above nonlinear constraints-for instance ( 5 a )  
for the IE (4a). 

For n = 4 the reconstructed solution r(, from the IE (4a) is also a solution of two other 
differential linear systems (1') and (1"), (LIII- QIII)I(I = 0, so that the compatibility 
conditions between ( l ) ,  ( l ' ) ,  (1") give the constraints that the (4:) must satisfy-for 
instance ( 6 a )  if we start with (4a). In this way if we start from formalism bb in such a 
way that only potentials confined in R are present (by requiring some X i  = 0) we can 
exhibit explicit examples of nonlinear equations having confined solutions in R For 
instance, for n = 3 the nonlinear integro-differential equations 

a 
-qf(Xl, x,, xk) = Jxr q h i  dx; Jx, qh! dx:, (5bb)  
ax, 

have confined solutions in R3-for instance (7bb)-and there exists a generalisation of 
this kind for n > 3. 

This intriguing property that our IE of the (4ab)  type is common to different linear 
systems is due to the fact that different linear differential operators put to zero the scalar 
kernels P:. Consider, for instance, n = 3 and formalism a : 

E 

( i ,  i) = (2, I ) ,  (3,2), ( L 3 )  

I I ">'I ( G + ~ ~ ~ - l -  a FI. = o  
a y  

is a necessary relation for the IE (4a )  to be linked to system (1); however, there exists 
another relation 

which leads to system (1'). Similarly for formalism b :  

leads to ( l ) ,  whereas 

connects the IE (46) to another system (1'). 

2.4. In the following sections we shall derive IES associated to linear differential systems 

We sketch here very briefly the general method (Cornille 1978b) and as an illustration 
we consider a second-order case, emphasising the possibility of different IES in the 
multidimensional case. 

(i) Let L be a multidimensional linear differential operator with a constant or 
eigenvalue term, Q a 'potential', r(, a solution, 

( L  - Q)r(, = O ,  L*o = 0, (1) 

and 
class of @ and Q. 

is known. The aim is to define a formalism from which we can construct both a 
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(ii) We postulate a representation of +, 

* = $0 + 2’(*oX), (11) 

where 2’ is some functional integral and X the transform of 9. 

equations (111) and is linked to Q(II1). 
(iii) We put (11) into (I) and obtain that X both satisfies well-defined nonlinear 

(iv) We seek both an integral equation of the type 

X = @ + [ 9 X  (9 linked to fl (IV) 

and the properties that 9 has to satisfy in order that X ,  the solution of (IV), verifies the 
nonlinear equations (111). We find that 9 satisfies a linear equation that is completely 
integrable and is linked to the linear part of (111). We construct a class of 9 leading to a 
class of X and consequently to a class of J, and Q. We have to take into account the 
boundary conditions occuring in the formalism. 

As an application we consider a scalar second-order example in R”, 

if 

The identity is satisfied if 

(On + 2 K = 0 ,  v + 2 1 aiki,,, = 0. (111) 
i i 

Let us consider the following IE assuming that the solution exists and is unique: 

K ( X I , . . . ~ ~ ~ ; Y )  

= F ( x ~ ,  3 x n ;  y ) + C  ai F(x1, * 9 xi-1, S, x j -c l , .  * 3 x n ;  y )  (IV) 

OnFn = 0. 

i Ip 
x K(x1 , .  . . , x,, S) ds, 
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If we assume the boundary conditions 

then K ,  the solution of (IV), satisfies the nonlinear equations (111). (For the proof we 
apply On to both sides of (IV), obtain 

OnK = -2F a , k j , x ,  + Cai J F O X ,  
i ' x ,  

and compare with the solution of (IV).) Let us assume now that ai takes only the values 
0 or 1 .  In the one-dimensional case we have only one possibility, whereas for n > 1 we 
obtain n 2  - 1 different representations (11) and the IE (IV). Let us also remark that F 
has n + 1 variables, x l ,  , . . , xn,  y ,  and only one constraint, OnF = 0. On the other hand 
for the IE associated to system ( 1 )  that we build in the following section, the number of 
variables of the scalar kernels Fj minus the number of constraints will always be 2. 

3. Nonuniqueness of the inversion-like integral equations associated to the (1) 

As was previously explained, the non-uniqueness considered here comes from the fact 
that we can start with different representations of the solutions of ( 1 ) .  We give the 
results obtained with formalism b and restrict the study of formalism c to the n = 2 case. 

3.1. Formalism b 

(i) We start with equation ( l ) ,  (LI + i k h  - QI)* = 0, and rewrite it with scalar quantities 
and 

* =  j U'] 
un 

We introduce n 2  - n arbitrary constants A j, with i # j ,  and define A;,= (Ai - A  :,)AT' for 
i # j ,  A i =  l,(a/ax +ikA)u:(x) = 0, 4: = (Sii(u:,(xi) l l l , i  u: t (x l ) ) ) .  We verify (LI+ 
iKA)(t,b?, . . . , +,,) = 0. 

(ii) We assume for a set {+i} of n solutions of ( 1 )  a representation of the type ( 2 b ) :  

0 

1=1 

(iii) We assume the boundary conditions 

lim uy , ( y )K j (x l , .  . . , x , ;  y ) = O ,  
v -+m 
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and substituting (26) into (1) we defirle 8: = K { ( y  = x i )  and obtain 

1383 

a m lx, U :i ( y )[ (z + Xi$-) K { - q fK ;] d y + U :i ( x i ) [  -qi + X {k{ ( 1 - S i i ) ]  = 0. 
1 

The identity can be satisfied if 

Let us notice that if A: -0, then X j =  h,Ail, U:; +constant, in such a way that (26), (36) 
reduce to (2a), (3a), and this formalism is really a generalisation of the previous one 
recalled in the introduction. Furthermore, if A i =  0 or A j  = A;, then qj = 0 in equation (1) 
without modifying the operator LI + ik A. 

(iv) Let us consider an integral equation of the equation (4) type written with scalar 
quantities 

- .  
Kj(x1,.  . . , x , ;  y )  = F : ( x l , .  . . , x , ;  y ) + C  J F',(s; x 1 , .  . . , x , ;  y ) K Y ( x l , .  . . , x , ;  s), 

m xm 

m = 1 , .  . . , n 

or (46) 

XLxm;x i -y+  1 X k x m ) .  
m # i  

If we assume that the solution of (46) exists and is unique, and further the boundary 
condition 

lim Fh (s, x l ,  . . . , x,, ; y)KT ( X I ,  . . . , x , ;  s) = 0, 
s - t m  

then we can show that the { K j }  solutions of (46) satisfy the nonlinear equation (36). For 
the proof we notice that 

and applying a /ax i  + X $ / a y  to both sides of the IE (46) we obtain 

Taking into account the linear differential equations satisfied by Fk following (46) we 
find that the RHS can be written 

and comparing with the solution of the IE (46), the result (36) follows. 
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3.2. Formalism c for n = 2 

The study is done in appendix 3. We start with the representation (2c), where we 
choose ui(xi, xi , )  = u ~ , ( x j ) u A ; ~ ( x j , ) ,  j ' #  j ,  and obtain our IE which depends upon eight 
scalar kernels F;,,(i = 1 ,2 ;  j = 1 ,2 ;  p = 1,2):  

0 

We remark that from one kernel F;,, specifying the restrictions about s1 and s2 we build 
E;,, and Fjw kernels. The link between the solutions K;, ,  of equation (4c) and the 
potentials qj of equation (1)  is 

We remark that the scalar kernels F;., still depend upon two independent variables, and 
consequently there exist confined solutions in R 2  using for the F;,., kernels the same 
type of confining functions as in the previous paper (Cornille 1978a). 

Let us now verify for n = 2 that formalism c is really a generalisation of formalism 6, 
or equivalently that (4c) reduces to (46) when (2c) reduces to (26). We must have 
K:2 = K22 = K l l  = K Z I  = 0,  Fi2 = Fi2 = F:l = F:l = 0 .  All the Fj,p,q kernels are 
zero except Fi12, F i l l ,  F:21, F:22. These non-zero kernels are identical to F:, F : ,  F:,  
F: respectively of equation (46). (We remark that in (46) we can multiply U: or Vj by 
any constant without altering the partial differential equations that the Fj have to 
satisfy.) 

1 2 2 

4. Confined solutions in R" 

Starting with formalism 6 we provide a general method to obtain confined solutions in 
R". We recall that q:  = A$:,  so that qj = 0 if A: = 0 or A I, = A,. We consider a particular 
choice of formalism b (we call it bb), in such a way that only a set q;+ 0, whereas all the 
others are zero: 

q: =0,  except the set {q:;,q:;,q:; ,  . . . , q:;}  i sZ0;  

From the relation between q: and K: this means that many A :  are identically zero, 
leading to a particular choice of the input representation (26) which we call (2bb): 

V, # i z ,  A k = O ;  Vm f i 3 ,  A?,=O; V, # i d ,  A ? , = O ;  

all i l ,  i 2 ,  . . . , in are different. 

. . . V , #  i l ,  A h = O  

n:; # 0 ;  A : :  # 0 ;  
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We assume that all the F ]  = 0 except those with indices symmetric to the q: + 0: 

F: = 0 except the set {F:;, F : Z - ~ ,  . . . , Fi;, F:;, F:: }, (4bb) 

In fact, in the following, all the results concerning the confinement properties are still 
valid if we introduce the diagonal kernels F! f 0. However, for simplicity in the 
formulae we also put F:  = 0. Taking (26b) into account in (466) we obtain 

IF:: (x, ,  - s + Ai;xl1; x,, - y + A:;xt,), E:-, (x ln- ,  - s + A:;-'xln ; xIn - y + A:;xl1), . . . , 
(4bb) 

From the expansion (4 ' )  we study first how this confinement property works for the first 
non-zero contribution to the q j 2  0. Secondly we give explicit examples in closed form 
corresponding to the sum of all the terms of (4 ' ) .  

F:: (xI ,  - s + X i:xI3; x I3 - y + A i ~ ~ ~ . , ) ,  F:: ( x I ,  - s + X ::x,,; x,, - y + X ::xl3)}. 

4.1. In order that kj be confined in R we must at least have that this property holds for the 
first contributing term in the expansion (4 ' )  

In order to have some insight let us start with a simple example, given by (7) (F:  f 0, 
FZfO, F : f O ) ,  and look at K:, K:, K:  corresponding to the q i + O :  

*, *, K: * 
K:,  *, * ] = [ j F : F : ,  JF? 1 + higher-order terms. i *, K:, * x JFV;, x 

We remark that the smallest-order contribution to these Kj appears first in J 96 If 
further the F: are degenerate, i.e. a product of a function of s and a function of y ,  then 
J FiF: is in fact a product of three different functions. If the variables associated to 
these functions represent a basis in R3,  and if each function vanishes when its 
corresponding variable goes to fa, then we can hope to get terms J F$: confined in 
R3.  If now the F:  are a sum of such degenerate terms, F:  = E m  g:,,(u:(s))hj,,(u:(y)), 
then IF;$: becomes a sum of terms, each term being as above a product of three 
diqerent functions associated with different variables. In this case also we hope to 
obtain J F'& confined in R3.  

Coming back now to the general formalism bb, we remark that the Ki with indices 
( i ,  j )  = (i l ,  i 2 )  . . . (i,, i l )  symmetric to the F : f O ,  ( i , j )  = ( i 2 ,  i l )  . . . (i l ,  i n ) ,  appear firstly 
in .'Xfl-l, the ( n  - 11th order of perturbation (4 ' ) .  Let us write F: = FI ( s ;  y )  (forgetting 
for the moment the x l ) ,  to obtain 

x F:; ( s  = xl,, s3) + higher-order terms. 

Let us now in (4bb) consider the degenerate kernels F:  = g:h: and define 

F:: =g::(x , , -s  +X::xt,)h::( - Y  + X : : x I 3 ) ,  i l  --* i ~ ,  i~ + i 3 ,  i 3  --* i4, 

then F:: + F:: and so on; 



1386 H Cornille 

Then 2;; is given by 

Now let us assume, as in equation (8), 
.+m 

(8) 

Then A:; is the product of n different functions, each of them depending upon one 
variable and going to zero when this variable goes to fa. Consequently A:; is confined 
in R". 
4.2. Simple examples for the formalism bb where the solution can be written in closed form 

Now what happens for the other-order terms of expansion (4'). For the most simple 
degenerate kernelsFi = g i ( u : ( s ) ) h : ( u : ( y ) ) ,  thesumof these terms (solution of equation 
(4)) can be written in closed form, and we find 

where A:,; is given by equation (10). Consequently (putting aside the possible zeros of 
the Fredholm determinant D ) ,  D is bounded and kj; is confined in R" if we assume 
that the FI kernels are of the type given by equation (8). Let us remark that in order to 
satisfy equation (8) for Ai,k it is sufficient that g i ( w ) h r ( w )  be an integrable antisym- 
metric function of w. 

Is this confinement property restricted to the most simple degenerate kernels? We 
shall see that this property is more general and for simplicity come back to the n = 3 case 
with the example where 9 is given by ( 7 ) .  We assume 

whereas all the other F: kernels are zero. The solution for mo = 1 was written (7bb) .  
For m o >  1 we get for the non-nulls qf,  (j, i )  = (2, l), (1,3),  (3, 2) 
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where 
r m  

A ! ; f ‘ ( x )  = J gi,p(-u)hi,(-u) du. 
--x 

Let us still assume equation (8): 

t W  

A!::‘(X) + 0, or I_, gi.p(U)hirp(U) du = 0. 
IXI” 

In the first relation (assuming that B, is bounded in R 3 )  we see that 2; is a sum of 
products of functions depending respectively on x,,  xi ,  x k ,  each of them going to zero 
when respectively lxil + CO, ( x i [  +CO, 1x11 + CO. The second relation is an algebraic linear 
system with coefficients bounded in R . The solutions of this system give the B,, and if 
we exclude the zeros of the determinant (which is in fact the Fredholm determinant of 
equation (4), (46b)), then the B, are bounded in R 3 .  In conclusion the qi$O are 
confined in R 3 .  In order to satisfy equation (8), we can for instance take very simple 
examples, 

where a:.,,,, Pi.,,,, vi,,,,, q;,, are positive integers, p;,,,, and qi,,,, being even integers. In 
order that g:,m(u)hlk,p(u) be an antisymmetric function of U, it is sufficient to consider 
a;,,,, odd (even) integers and even (odd) integers. 

5. The IE resulting from a compatibility condition between different linear differential 
systems 

In this section we show that our XES of the equation (4) type for n 2 3 are common to 
different linear differential systems, in such a way that the reconstructed potentials from 
these IES must satisfy the nonlinear constraints coming from the compatibility condi- 
tions between these systems. 

5.1. Formalism a and n = 3 

Let us assume that both system (1) and another system (1’) have the same solution 4:  
(LI+ikA-Q1)4 =0(1), ( L I I - Q I I ) ~ = O ( l ’ ) ,  where 

with k = j +  1, I = j + 2 ,  I = 1 if j = 2  and I = 2 ,  k = 1 if j = 3 ,  

A=[: A 2  Q ~ = j * j  0 4:  O2 q: ;:I. Q I I = [  0 4 ;  -4: O 2  -;:I. 4 :  

3 43 93 -4 3 43 

As we shall see, the IE (4a)  is common to (1) and (1‘1, and the nonlinear constraints (5a )  
which are required for the qj reconstructed from IE (4a)  represent the compatibility 
condition between (1) and (1’). 
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(i) Compatibility between the two systems. Let us define L' = LI * LII, 2Q' = 

QI QII, A+:  

q 3  0 0 

A 3  0 ' A 2  

A + = ( o  A 1  \=Io A 3  

The compatibility condition is [L', L-I+ = 0. Taking into account the relations 
L'(Q'$) = (L*QF)+ + QTA+K1(LT+),  we can eliminate + to obtain 

-ik{AQ- - AQ+ + Q+A- - Q-A+} 

+{L-Q' -L 'Q-+2Q'A-A- 'Q' -2Q-A,A- 'Q- }~O.  

It is easy to verify that the first bracket is identically zero. The second bracket written 
with scalar quantities leads for the {q:} to the nonlinear three-wave equation ( 5 a ) .  

(ii) IE associated to system (1'). We assume that (1') has a set of solutions $i given by 
(2a) .  We substitute ( 2 a )  into system (1') following the general method explained in 
3: 2.4 and find that the transforms Kj  must satisfy (for simplicity we do not reproduce the 
boundary conditions) 

e Ai  
u y ,  ( x ,  ) ( q  1 (1 - Si , )  - K i-) = 0, i # j .  

A i  

Thus we still find for the potentials q: = &?iAi/hj, and the IE associated to (1') if it exists is 
such that the solutions K :  must satisfy 

(iii) Nonlinear constraints satisfied by the solutions of the IE ( 4 a )  associated to system 
(1). We report here briefly results obtained in the previous paper (Cornille 1978a). 
Owing to the fact that the operator (A i' a /axk  - A  7' a/ax, ) ,  k # j ,  1 f j ,  when applied to 
Fj or Fj gives zero, we deduce from equation ( 4 a )  that 

If we compare this with the solution of ( 4 a )  itself we see that the Kj satisfy equation 
( l l a ) .  Consequently equation ( 4 a )  is also an IE for system (1 ' ) .  If, further, between 
equation ( 3 a )  and ( l l a )  we eliminate the K :  term, then we obtain the nonlinear 
three-wave equation written down in ( 5 a ) .  In conclusion, (1) and (1') have the same IE 
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of the equation (4a)  type, and the reconstructed potentials must satisfy the nonlinear 
equation ( 5 a )  which results from the compatibility between both systems. 

5.2. Formalism a and n = 4 

Let us assume that 4 is a common solution to three systems: (LI+ikA - QI)4 = 0(1), 
&I-  QIIM = W ' ) ,  (LIII-  Q I I I ) ~  = O(l"), where 

with k = j + l ,  1 = j + 2 ,  1 = 1  if j = 3  and 1 = 2 ,  k = 1  if j = 4 ,  

with k = j + 2 , 1 =  j+-3,1= 1 if j = 2 , 1 =  2, k = 1 if j =  3 and 1 = 3, k = 2 if j =4, 

0 4: 4: 4: 

'4 = [ l o A 2  A 3 0  1, 
Q 1 = I q ;  43 '; q3 q: 0 

A 4  q 4  q4 q 4  

As we shall see, the IE (4a)  is common to (l), (1') and (l"), and the nonlinear constraints 
(6a)  for the q: represent the compatibility condition between the three systems. 

(i) Compatibility conditions between the three systems. Let us define L' = LI * LI1, 
M' = LI f LIII. We have two compatibility conditions, [L', L-14 = 0 and 
[M+,  M-14 = 0 which are studied in appendix 1. It is shown that the scalar kernels q: 
satisfy the nonlinear equations (6a) .  Consequently the IE (4a) must be a common IE to 
the three systems ( l ) ,  (1') and (1") 

(ii) IE associated to the systems (1') and (1"). We sketch very briefly the results using the 
general method (9: 2.2). On the one hand we assume for both (1') and (1") that the 4, 
given by ( 2 a )  are solutions. We find that the transforms K :  must satisfy well-defined 
nonlinear equations: 

On the other hand we consider the IE (4a). From the fact that the operator 
( A T '  d / d x k  - A  i1 a/dx,) gives zero when applied to E;. or F;, we deduce that the solutions 
of the IE (4a) satisfy the above nonlinear equations. In conclusion, (4a) is an IE 
common to (l), (1') and (1"). 
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5.3. Formalism bb and n = 3 

Let us assume that both system (1) and another system (1‘) have the same solution 
4: (LI+ikAI- QI)4 = 0(1), (LII+ikAII- Q I I ) ~  = O ( l ’ ) ,  where 

a/axZ 0 
a/ax3 1, QI=[:l :’ :;], 

a/axl q3 0 

A S = [  A 3  

0 

[ O  
L1= ( &I--- a:,) , 

0 0 4: A i  A 2  

QIi-(qi 0 93 O2 0 0 1. 
(i) Compatibility between the two systems. We consider [LI, L I I ] ~  = 0, and using the 
identities LII(Q14) - (LIIQd4 - QI(LI4) = 0 ,  L I ( Q I I ~ )  - (LIQIIM - Q I I ( L I I ~ )  = 0, the 
compatibility condition is written as a sum of two terms. The first term -ik[AIQII+ 
QIAI - A I I Q I  - QIIAII] is identically zero. The second term [LIIQI-LIQII + ( QII2 - 
(QII)’] = 0 give the nonlinear constraints for the potentials (d /dx , )q :  = qiq;. Let us 
remark that if q:EQI  (or QII), then 4 ;  and q f  belong to QII (or QI). Thus the 
compatibility constraints mix in the relation q:.x, = q i q f ,  the potentials of systems (1) 
and (1‘). If we want to get constraints for potentials E QI (or QII), we must eliminate the 
other potentials, In this way instead of having nonlinear three-wave type equations we 
have integro-differential equations. For instance, for qi E QI, where we know that they 
can be confined in R3,  we can integrate to obtain 

&=lo A 2  A:\9 

m m 

q:,x, = 

written down previously in 9: 2.3. 

(4bb)  are of the type 

qfqlk dxi  I, q h ;  dx: (5bb) ,  I,, 
Let us recall that, in order to reconstruct the potentials of (l), the kernels F: of the IE 

(4bb)  

whereas A: = A: = A: = 0 and q: = A:k: for the same set of ( i ,  j ) .  As we shall see in the 
following, this IE with the same kernels F: is also an IE associated to (1’) 

(ii) IE associated to (1’). Firstly we assume that (1’) has a set of solutions 4, given by 
(2bb)  with A: = A i  = A: = 0. We substitute (2bb)  into (1) to obtain the set of nonlinear 
equations that the transforms Ki must satisfy, 

F:  (x, - -S + A:x, ; X, - y + A Lx~),  ( i , j )  = (1 ,2) ,  (2,3),  (3, I ) ,  

where k = i + l ,  l = i + 2  if i = 2 ,  1 = 1  if i = 3 ,  and k = l ,  1 = 2 ,  8i+1,,=Sl,l if j = 3 .  
Consequently the Kj must satisfy 

( l l b b )  

where k = 1, 1 = 2 if j = 3 and I = 1 if j = 2.  Moreover, q: = A:k:, q: = ~ : k : ,  4;  = ~ : k :  
and Ai = 1. 
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Secondly we want to show that the solutions Kj of the IE (466) also satisfy the 
nonlinear equation ( l lbb) .  For this we apply the operator (a/&, + X k / a y )  to both 
sides of the IE (4) with (4bb)  kernels to obtain 

where k and 1 have been defined in (1 1 bb). Comparing with the solutions of the IE (4bb) 
we see that these solutions satisfy (1166). In conclusion, the IE (4) with Fj kernels (4bb) 
is associated to both systems (1) and ( l ' ) ,  and the Kj solutions must satisfy both 
equation ( l l b b )  and equation (3bb), which we rewrite as 

("+A$)K; = K i x r k r ,  k = j + l ,  k = l  if j = 3 ,  (3bb) 
axi a y  

whereas the potentials of Qr are 4: = A:k:, q: = A:k: andq: = @?:. Combining (3bb) 
and ( l l b b )  we obtain for the six potentials of QI and QrI the relations ( t i / t ixi)qj  = qiq," 
which were obtained previously from the compatibility conditions between the two 
systems (1) and (1'). Let us finally remark that the solutions (7bb) confined in R 3  
correspond to the three potentials of QI, and consequently the nonlinear integro- 
differential equations (5bb) have solutions confined in R 3 .  

5.4. Formalism b and n = 3 

We sketch the results very briefly, because nothing really new appears in this case. As 
for formalism a we still obtain a three-wave nonlinear equation resulting from the 
constraints equations of the solutions of the IE (46) and from the compatibility 
conditions between two linear systems. The study is done in appendix 2, and we obtain 

It is easy to verify that, when Ai-.O, ( 5 b )  reduces to (5a) .  Here, as in the previous 
paper (Cornille 1978a), we could use formalism b to show that if we interpret one co- 
ordinate as a finite time then there exist solutions of equation (5b) which are confined in 
the R 2  space spanned with the two other coordinates. 

6. Conclusions 

A clear understanding of the properties of multidimensional nonlinear evolution 
equations (for instance the confinement property) requires as a preliminary study the 
investigation of the multidimensional space in which the solutions have to evolve. The 
nonlinear equations called 'integrable' or 'linearisable' or 'soluble by the inverse 
method' are in fact those which represent a compatibility condition between different 
linear partial differential systems (Ablowitz and Haberman 1975). In this case the main 
problem is to find a formalism (termed IE) generating potentials associated with linear 
systems. In the R * space case (for simple systems), the classical method is the analytic 
one. Unfortunately in the R" space case this method is not yet available (it is not even 
so clear that we have really to do it). In the previous paper as well as in the present paper 
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we have considered an algebraic method (Zakharov and Shabat (1974) were the first to 
realise the usefulness of an algebraic approach) which generates a class of potentials 
associated to a linear differential system and which can be studied in R". In this way we 
have found specific features of the R "  case not present in R ' :  

(i) The non-uniqueness of the I E  appears at two stages. Firstly, it results from the 
choice of the set of solutions that we want to reconstruct. This is illustrated here in what 
we call formalisms a and b. One generalises the other and has new degrees of freedom: 
we can for instance introduce arbitrary parameters or put to zero some of the scalar 
potentials. Let us remark that all the corresponding IES reduce to only one equation in 
R-the classical Marchenko equation. We have even written down here (formalism c )  
in the 2 x 2 case a general I E  with eight arbitrary scalar kernels which, for instance, could 
generate a more general class of solutions of the generalised nonlinear Schrodinger 
equation than the one deduced previously (Cornille 1978b). The second ambiguity 
comes from the fact that we do not know if the IE determined is the more general one 
associated to a given input representation of the solutions of the system. In some cases 
we know (Cornille 1978a) that there exist at least two IES corresponding to the same 
input representation, one generalising the other. Here, the fact that for n 2 3  the 
reconstructed potentials satisfy constraints suggests that there can exist a generalisation 
where these constraints disappear. 

(ii) The confinement property in R comes from the fact that the degenerate kernels 
of the I E  are of the exponential type, whereas in R "  the extension of this property with 
the same type of kernels does not work. However, using a limiting process, Manakov er 
a1 (1977) have shown, for the exponential-type kernels, how to obtain confined 
solutions, but this possibility is not specific to the exponential kernels (Cornille 1979). 
In R 2  the confinement property is realised naturally by the fact that the IES include a 
large class of other kernels, such as Gaussian kernels. 

In R",  n > 2 we give a general procedure for constructing potentials confined in all 
asymptotic directions of space. However, the potentials are constraints, such that these 
confined solutions correspond to a new class of nonlinear integro-differential equations 
solvable by the inverse method. Some of the scalar potentials must be zero, so that we 
take advantage of the degrees of freedom of our generalised IE (formalism b ) .  

(iii) For n 3 3 the IES that we have constructed as being associated to a particular 
linear system are in fact the IES common to other linear systems. This new aspect of the 
IE was not present in one dimension or in the two-dimensional case presented here. For 
n = 3 the two systems are first-order partial differential systems, and from the work of 
Ablowitz and Haberman (1975) it is clear that the compatibility condition must lead to 
the two-spatial-dimensional nonlinear three-wave equation (a physical equation of 
plasma physics). Thus from the formalism of the previous paper or formalism b of the 
present paper we know that this nonlinear equation has an infinite number of confined 
solutions in R 2  for any finite time. For formalism bb the potentials associated with the 
two linear systems belong to two distinct classes, in such a way that the resulting 
compatibility condition leads to some kind of nonlinear three-wave equation mixing the 
two classes. If we eliminate one class, then the resulting equation becomes an 
integro-differential one of a new type which has confined solutions in R3.  For n = 4 the 
IE is common to three systems, and the constraints that the potentials must satisfy 
represent their compatibility conditions, and so on for higher values of n. 

In conclusion, exploring, for the IE, the reconstructed potential space associated to 
linear differential systems in R "  we obtain results unexpected from our knowledge of 
the one-dimensional case. Moreover, new features appear from n = 2 to n = 3. 
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Appendix 1 

We study the compatibility condition in the n = 4 case. 
(i) We consider the two systems L*$ = (-ikA+ 2Q'+ R+)$, L* = LI f LII ,  where 

0 0 4: 0 q : o  0 

R-=Q'=[ol  q 3 0  O 2  0 "1, 0 Q - = ( I J l  0 0 q : o  q;] ,  

0 q 4 0  0 q 4 0  0 0 

o o o q ' :  

0 q 3 0  0 '  
0 0 q 4  

R+=Iq' O2 0 0  

a A~ a h 2  a h 2  a 
a 2  = - - 9  h 2  ax2 h 3  ax3' ,i3 ax3 ,i4 ax4 

h 3  a ,i3 a h 4  a h4 a 
a4=-----, 

h4 ax4 axl axl h 2  ax2 

a 
1 -  

a 3  = - - -- -9 

$ being a column vector, and study the compatibility condition [L', L-I$ = 0 ,  which 
gives 

0 = -ikA(Q--Q')+L-(Q'$)-L'(Q-$)+4[L-(R'$)-L'(R'$)]. (A1.2) 

Let us introduce the matrices A, associated to A: 

With some algebra we get 

i (L-(R+$) - L'(R'$)) = - ( (LIIR+) + R'AlA-'(R+ - Q'))$, 

L-(Q'$) = [L-Q'+ QfA2A-'(-ikA+2Rt+ Q-)]$, 

L+(Q-i+k) = [L'Q-+ Q-A&'(-ikA + 2Q-+ Q')]$. 

Taking into account these relations, the RHS of (A1.2) becomes the sum of two 
terms. The first, -ik[AQ- - AQ' + Q'A, - Q-A3], is identically zero, so that the 
compatibility condition between the two systems (Al .  1) is finally 

L-Q'-L'Q--LnR++ Q'ii,A-'(Q-+2R') 

- Q - A 3 A - 1 ( 2 Q - + Q + ) - R R A l A - 1 ( R C - Q Q C ) ~ 0 .  (A1.3) 
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(ii) W e  consider the two other systems, 121 *+ = (-ikA + 2R" + Q-)& M" = LI f LIII, 
LIII = (aii&), where 

a h 2  a s2 = - - - - -, A~ a h l  a 
ax, A., ax4' s4 ax4 h l  axl 

A a ~~a h 3  a ,i3 a 
h l  ax, h2 ax2' h2 ax2 h 3  ax3' 

1 -  

s 
3 -  4 -  

and study the compatibility condition [M', M-14 = 0, which gives 

(Al.4) 

O =  - ikA(R- -R' )4+M-(R'4 ) -M' (R-4 ) -LIII (Q-4)  = 0 ,  (A1.5) 

with 

L I I I ( Q - ~ )  = ( L I I I Q - ) ~  + Q-A4A-'(Q'- Q-M, 
M-(R++) = [ (M-R')+R'AlA-'(- ikA+Q'+2R')I4,  

M ' ( R - 4 )  = [ ( M ' R - ) + R - A z A - ' ( - ~ ~ A + R ' + ~ Q - ) ] ~ .  

Taking these relations into account in (A1 S), the RHS becomes a sum of two terms. The 
first term, -ik[AR- - R-A2 - AR' + R+A1] is identically zero, so that the compatibility 
condition between the two systems is 

M - R  ' - M'R - - LIIIQ- + R+AlA-'( Q' + 2R') 

- R-;izA-'(2Q-+R+) - Q-A4K1(Q'-  Q-) E 0. (A1.6) 

(iii) Written with scalarquantities, (A1.3) and (A1.6) give the two sets of nonlinear 
equations that the 41 must sztisfy and which are written down in (6a). 

Appendix 2 

We consider formalism b and n = 3. 
We start with system (l), (LI  + i k A  - QI)4 = 0, where 

applied to F: or .F': gives zero. We apply this operator to both sides of the IE to obtain 
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We write (A2 .9 )  for Kj, K f  and apply respectively 

(A2 .2 )  

(A2 .2 )  is the equivalent in formalism 6 of the relation ( 1  l a )  in formalism a or (1166)  in 
the formalism 66. Recalling the nonlinear relations ( 3 6 ) ,  (A;)-’(a/dx,) + a/ay)Ki = 
K i k j  +XF(Xj)-’kfK:, we can eliminate the Kj between ( A 2 . 2 )  and ( 3 6 )  and take the 
limit y = xi, leading to an equation for kj. In this way we obtain the nonlinear equation 
( 5 6 )  of 0 5.4 which must be satisfied by the kj or by the qf if we take into account . *  q !  = X!K! 

I I I’ 

(ii) IE associated to another system (1’) 
We shall see that the IE (46 )  (here called (A2 .1 )  is also the IE of another system (l’), 
(LII + i k f l -  P)$ = 0, where 

with i + 2  = 1 if i = 2 ,  and i +  1 = 1, i + 2 = 2  if i = 3 .  

U, = u * , ( x , ) u ~ : ( x i ) u ~ I ( x k ) .  Substituting ( 2 6 )  into (1’) we obtain 
We assume that (1‘) also has the set of solutions (lli given by ( 2 6 )  and where 

0 

From (A2 .3 )  it follows that, if p i  = (A:/A;)k:, then the relations are satisfied if the K :  
transforms satisfy the nonlinear relations (A2.2) .  In conclusion, ( 1 )  and (1‘) have the 
same IE (46), and the nonlinear three-wave equation ( 5 6 )  represents their compatibility 
because it is obtained from a combination of relations (A2 .2 )  and (36 ) .  

(iii) If we interpret one coordinate as time, then the nonlinear three-wave equation 
(56) has confined solution in R 2  space at finite time 
Let us consider the kernel 9 as given by the example ( 1 5 a )  of the previous paper 
(Cornille 1978a), but with degenerate kernels Fj = gjhi given by equation (46) of the 
present formalism 6. The solutions ki are still given by (15b)  of the previous paper; 
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however, (15c) of that paper is replaced by 

gf(Xki +A!kxk), h:(A:x, + A h ) ,  Af.k = I_, g i ( u ) h : ( u )  du. 

We assume g : ( u )  + 0, h : ( u )  + 0 when / U /  + CO. 

Let us recall that the relation between K:, the solution of (A2.1) (for (4b),  4: E QI and 
p i  E P is p i  = q : A ; ( A : A ; ) - ' ,  4:  = A$: .  The compatibility condition [LI, L I I ] ~ ~ ,  = 0 leads to 

0 = - i k ( i i P - N ? ~ ) I L  + L I I ( Q I ~ ) - L I ( P ~ ~ , ) .  (A2.4) 

A k +Xfx, 
I X I  

(iv) Compatibility conditions between systems (1) and (1') 

Let us define 

&A: 0 
0 0 

p=p+-p-  

P: 0 0 

QI = Q' + Q-, where the Q' are defined in 5 5.1. With some algebra we can factorise 4 
in (A2.4) to obtain 

O =  - ik[hP-RQI+(Q-Al -Q'A;?)A-(Q-A3+Q+A4).n] 

+[LIIQI-LIP+(Q-A1 -QtA2)QI-(Q-A3+ Q+A4)P]. (A2.5) 

The first square bracket is identically zero, whereas the second square bracket, written 
with scalar quantities, gives the nonlinear three-wave equation ( 5 6 ) .  

Appendix 3 

For ( 2 c )  and n = 2 we establish the IE associated to (l), where 4 :  = 0, 

0 We define u , (x~ ,  x2) = uA,(x,)u:;,(x,,), j '  f j and consider 

0 2  lim K:lu:: = 0 ,  lim u : ~ K : ~  = 0, lim u ~ ~ K ~ ~  =0,  
Y - 4 1  Y-m Y - X  

lim u; ,K: ,  =0 ,  lim u : , ~ : ~  = o ,  lim U ~ ; K : ~  =0 ,  
Y-m Y - p :  ?-a 
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and substitute ( 2 c )  into (IC). We obtain 

+ U, ( X I ,  x2) -4: + (1 - 61, 1 [ R:, A: + ":( - 1 + 31) = 0, { 
where k:, = K:,m ( y  = x m ) ,  y:I = 1, -y:, = 0, yf, = A,(A;)- ' ,  - y l  = A,'. This identity can be 
satisfied if 

Let us consider the IE and define kernels F;,,(sl;  s2; x l ,  x2;  y ) :  

= 0, i f j ' ,  

then one can show that the solutions K;, ,  of (4c) satisfy the nonlinear equations (3c) .  
For the proof we apply (a lax ;  + yj, ,a/ay) to both sides of the IE (4c), and taking into 
account the properties of the kernels Fj,p,q we obtain 

If we compare with the IE (4c) (when we assume that the solution exists and is unique), 
we see that the set {K;,,} verifies ( 3 c ) .  
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